Skip to main content
Loading

Hybrid Reservoir Modeling and Evaluation Merging Physics and Data-Driven Technology

Monday, 23 September
Room 220 - 222
Technical Session
This session is focused on integration of advanced machine learning technologies into existing workflows for reservoir modeling and evaluation. Highlights includes using data analytics to analyze large datasets and extract meaningful insights and using hybrid approaches for well performance analysis, completion design, connectivity analysis, and enhancement of reservoir modeling and simulation.
  • 1400-1425 220875
    Analyzing Impact Of Fracturing Revolution On Shale Oil Well Performance In Permian Basin: A Review From Over 10,000 Wells
    K. Zhang, OGRE Systems; Q. Lu, Sinopec Petroleum Exploration and Production Research Institute; X. Xia, Ryder Scott Company, L.P.; J. Li, Sinopec Petroleum Exploration and Production Research Institute; F. Wang, S. Gao, Sinopec Exploration and Production Department; L. Xu, OGRE Systems,Inc; D. Olds, H. Zhang, Ryder Scott Company, L.P.
  • 1425-1450 220989
    A New Algorithm For Automated ISIP Interpretation
    A.G. Garbino, D.N. Espinoza, The University of Texas At Austin; A.A. Savitski, S. Mondal, Shell Exploration & Production Co
  • 1450-1515 220933
    A Hybrid Approach For Production Forecasting And Uncertainty Characterization
    Z. Guo, S. Sankaran, Xecta Digital Labs
  • 1545-1610 220978
    Transfer Learning in Subsurface Flow Surrogate Model with Physics-Guided Neural Network
    H. Cheng, J. Qiao, Shenyang Institute of Automation, Chinese Academy of Sciences; Y. Wei, Institute for Interdisciplinary Information Sciences, Tsinghua University; S. Li, P. Zeng, H. Yu, Shenyang Institute of Automation, Chinese Academy of Sciences
  • 1610-1635 220906
    Application Of Artificial Intelligence To Model Stresses And Failure Parameters In Anisotropic Formations
    W. Yousuf, Texas A&M University; J. Kim, Texas A & M U (PE Dept Po's )
  • 1635-1700 221029
    Fast Evaluation of Reservoir Connectivity via a New Deep Learning Approach: Attention-based Graph Neural Network for Fusion Model
    T.A. Saihood, University of Houston; A.A. Saihood, Thi Qar University; M. Al-Shaher, University of Thi-Qar; C. Ehlig-Economides, Z. Zargar, University of Houston
  • Alternate 220838
    Enhanced 3D Pore Segmentation And Multi-model Pore-scale Simulation By Deep Learning
    H. Li, B. Aslam, B. Yan, King Abdullah University of Science & Tech
  • Alternate 221028
    Enhancing Reservoir Model History Matching With Ai Surrogate And Ensemble Iterative Algorithms
    K. Hammad, A. Alturki, Saudi Aramco; S. Sudirman, Saudi Aramco PE&D; Z. Sawlan, King Fahd University of Petroleum and Minerals
Exciting Update: New Date and Location for ATCE 2025

Exciting Update: New Date and Location for ATCE 2025

ATCE 2025 will now be held from 2022 October 2025 in Houston, Texas, USA at the George R. Brown Convention Center.

LEARN MORE HERE 

SUBMIT YOUR PROPOSAL NOW